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Abstract This chapter describes different approaches that use audio features for

determination of scenes in edited video. It focuses on analysing the

sound track of videos for extraction of higher-level video structure. We

define a scene in a video as a temporal interval which is semantically

coherent. The semantic coherence of a scene is often constructed dur-

ing cinematic editing of a video. An example is the use of music for

concatenation of several shots into a scene which describes a lengthy

passage of time such as the journey of a character. Some semantic co-

herence is also inherent to the unedited video material such as the sound

ambience at a specific setting, or the change pattern of speakers in a

dialogue. Another kind of semantic coherence is constructed from the

textual content of the sound track revealing for example the different

stories contained in a news broadcast or documentary. This chapter ex-

plains the types of scenes that can be constructed via audio cues from

a film art perspective. It continues on a discussion of the feasibility of

automatic extraction of these scene types and finally presents existing

approaches.

Keywords: scene determination, audio content analysis, sound classes, shot cluster-

ing, scene types
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Introduction

Video structure extraction is essential for effective search, retrieval
and browsing of video. The segmentation of a video into its shots and
scenes provides a better semantic access to video structure than the pure
frame-level access.

Example applications that may make use of the higher-level segmen-
tation of a film into scenes are:

navigation and browsing applications: shots and scenes may be
used to create a table of contents for a film and for direct access.

search and retrieval applications: annotations such as keywords,
full transcripts or meta-data like MPEG-7 may be used to perform
a content-based search on films; in this context, the retrieved entity
may be a scene giving a semantically richer access to the film than
a shot.

summarisation applications: scenes may be used as semantically
richer basic entities in the creation of a film abstract or summary.

In this chapter we explore only auditive techniques for unification of
several shots into a coherent scene. The first section describes our meta-
model framework that represents video semantics at various levels of
abstraction taking automatic analysis results from low level features to
high level semantics. In the second section, we adapt the model to the
subject of the chapter. We analyse current audio editing practices and
cinematic techniques which create perceivable scene structures and thus
explain from a production viewpoint how scenes are constructed using
audio effects. In the third section, we discuss the feasibility of automatic
extraction for the previously identified scene types. This creates the link
between the high-level cinematic scene structure and signal analysis.
The fourth section presents existing approaches toward automatic scene
determination using audio features. We conclude the chapter with a
summary.

1. The Meta-model Framework

Most research to date on video content analysis is based on retrieving
low level perceptual features in both the audio and visual domain. These
features can be useful only if they are represented in the context of higher
level semantics that are meaningful to viewers. In order to understand
and represent the sophisticated semantics of films, we need a model that
represents audio-visual (av) objects, meanings associated with these av
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objects and other associated objects, actions, and events depicted within
these objects.

In this section, we first describe a meta-model that helps to model
video semantics at different levels of abstraction. The meta-model pre-
sented here draws from semiotics and film theory [1], and allows users to
develop and specify their own semantics while simultaneously exploiting
the results of video analysis techniques. The term “film semiotics” in
this context describes the analysis of film on a level of audio-visual signs
that communicate meaning to the viewers.

The video meta-model represents the spatio-temporal dimensions of a
video on the horizontal axis and the semantics on the vertical axis (see
Figure 1.1). The third dimension shows the multiple levels of cinematic
codification that cover audio-visual features, objects, actions, and events
depicted in the images together with semiotic aspects of the meaning of
images. We believe that modeling video semantics requires describing a
video object at any semantic level at any of these levels of interpretation.

Figure 1.1. Video meta-model.

Using the meta-model framework, video semantics can be incremen-
tally developed by establishing relationships across av objects in any
or all of the layers shown in Figure 1.1. The bottom layer shows the
standard way in which video content is organised into temporal levels of
granularity. The terms used in the diagram are defined as follows:
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Object: Represents a single av object within a frame. The object
here is not necessarily region-based. It could be feature-based, for
example colour, loudness, etc.

Frame: A single image of a video sequence.

Shot: “A series of frames produced by the camera in an uninter-
rupted operation” ([2], p. 10).

Scene: A scene is a series of consecutive shots constituting a unit
from the narrative point of view [3]. This happens when they are
shot in the same location or they share some thematic content.

Clip (video): An arbitrary excerpt of a video used for a specific
purpose.

The next layer in the semantic dimension helps to model semantics
based on different types of relationships in the spatio-temporal domain.

Object relationships: Relationship among objects represented
in a frame, shot, or scene. The relationship could be spatial, tem-
poral, visual, aural, or semantic in nature.

Structure of features: Pattern of features that represents a
semantic construct. For example, a group of regions connected
through some spatial relationships may lead to the shape of an
object. (Basically it represents knowledge about the features).

Events: Specific events that occur over a temporal interval. For
example, camera pan is a cinematic event; a sudden burst of sound
is a perceptual auditory event.

The next level of conceptualization occurs when certain patterns can
be perceived over the spatio-temporal space, which is most often the case
in narrative forms in films. Bordwell and Thompson [2] define narrative
to be a chain of events in cause-effect relationship occurring in time
and space. Film theorists realised that many of these cause-effect rela-
tionships can be achieved through cinematic effects introduced through
powerful film editing techniques. Viewers’ experiences are shaped using
editing techniques that control shot lengths and relationships between
shots.

Pattern of shots: This represents different types of relationships
between shots planned during the process of continuity editing.
An editor uses four basic ways of arranging patterns of shots to
produce a desired effect on the viewer [2]. These arrangements
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are based on graphic relationships, rhythmic relationships, spatial
relationships and temporal relationships. For example, Adams et
al. [4] measure tempo of a movie using temporal relationships on
shot lengths and motion characteristics.

Order of events: This represents the order of cinematic and
perceptual events arranged in a certain predetermined sequence.
For example, a close-up followed by a loud sound could be used to
produce a dramatic effect. In the case of narrative structure, the
order of events occurring in succession is seen as a kind of surface
structure that conceals deeper logic of the narrative story.

Plot structure: This describes a systematic ordering of plot
events for narrative progress and development.

Semantic messages: The message refers to the meaningful se-
quences generated by the process of communicative utterances.
Semantic messages deals with the relation of signs and messages
produced by the narrative to the larger cultural system, which
gives it meaning.

The third dimension in the meta-model shows the different semiotic
levels at which a video is interpreted. Based on film semiotics pioneered
by the film theorist Christian Metz [1], we identify five levels of cinematic
codification that must be represented in the meta-model [5]. These are:

1 Perceptual level: This is the level at which visual phenomena
become perceptually meaningful, the level at which distinctions
are perceived by the viewer. This is the level that is concerned
with features such as colour, loudness and texture.

2 Cinematic level: This level is concerned with formal film and
video editing techniques that are incorporated to produce expres-
sive artifacts. For example, arranging a certain rhythmic pattern
of shots to produce a climax, or introducing voice-over to shift the
gaze.

3 Diegetic level: This refers to the four-dimensional spatio-tempo-
ral world posited by a video image or a sequence of video im-
ages, including spatio-temporal descriptions of objects, actions,
and events that occur within that world.

4 Connotative level: This level of video semantics is the level of
metaphorical, analogical and associative meanings that the objects
and events in a video may have. An example of connotative sig-
nificance is the use of facial expression to denote some emotion.
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5 Sub-textual level: This is the level of more specialized, hidden
and suppressed meanings of symbols and signifiers that are special
to cultural and social groups.

Increasingly the generation of cinematic and perceptual level descrip-
tions is being automated in current video analysis techniques. Subtex-
tual and connotative descriptions must still be created manually. The
diegetic level represents an interface between what may be detected au-
tomatically and what must be defined manually [6].

The main idea of this meta-model framework is to allow users to de-
velop their own application models, based on their semantic notion, by
specifying objects and relationships of interest at any level of granular-
ity. A given application may use any subset of the model. In [7], we
have shown how this meta-model is used to develop an application for
the sports domain.

Our focus in this chapter is to show how sound contributes to video
semantics represented in the meta-model. It is well understood by film
makers that sounds complete the film and video experience because they
bring reality to the illusion of image. Sounds in films induce the audience
to respond at any or all the interpretation levels shown in the meta-
model.

The tripartite division of sound track into speech (or dialogue), music
and noise drawn from the vocabulary of film making practice is based
only on the perceptual level and is hardly adequate to the analysis of
the audio-visual logic of the represented world of the film [8].

At the diegetic level, we need to hear the sounds that match the
images on the screen: For example an actor knocking on the door with
no sound is not really a knock at all.

At the connotative level, a sound can subtly affect how we respond
to a scene emotionally. A night scene of a couple in the woods can
be entirely different depending on the sound we hear. The sound of a
howling wolf as against the sound of gentle breeze gives a completely
different sense of drama to the same visual scene.

As Bordwell and Thompson [2] point out, we must learn to ’listen’ to
films, as sound can achieve very strong visual effects and yet remain quite
unnoticeable. Sound can actively shape how we perceive and interpret
the image. For example, music in films contributes to the interpretation
at all the levels shown in the meta-model.
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Figure 1.2. Sound Categories.

2. Audio Editing Practices for Scenes

We classify sounds in films into two broad categories: production
sounds and post-production sounds (see Figure 1.2). The sound recorded
on the set is called production sound and should be recorded and cut
with the same care as the visuals. Sound created later and used to fill
in gaps or add to existing production sound is called post-production
sound. Both these categories contribute to the development of coherent
scenes in films.

How does a scene get recorded? Bordwell and Thompson [2] describe
the production of a scene (the recording itself) in three steps:

1 The director films a master shot, which records the entire action
and dialogue of a scene.

2 Portions of the scene are restaged and shot in closer views or from
different angles.

3 The script supervisor ensures continuity details on the image track.

This results in several takes of the scene out of which the editor composes
the image track. It also creates the production sounds. Production
sounds may be dialogues, natural sounds associated with the scene - for
example the sound of a door bang when a person shuts the door -, and
ambient sound - such as the sound of a crowd during a fair. From an
aesthetic point of view it is important to capture as much of the ambience
and dialogues on the location. However, the recording levels of sounds
captured on location may be uneven, there may be some ’dead’ spots,
sound effects may have to be replaced or enhanced, ambient sound may
not be continuous, etc. [9]
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In post-production, clean dialogues, sound effects and music will be
created on several sound tracks for the scene. The aim of post-production
sounds is to lend coherence, complete the picture and enhance the story.
An example of good coherence between the image and the sound track
is the fading out of music in parallel to a fade out of a shot. Post-
production sounds are used in a variety of ways during editing to support
continuity in narrative films. As shown in Figure 1.2 there are different
categories of post production sounds that are used in films. Each of the
post-production sounds can be used individually or collectively, for a
variety of purposes, such as creating drama in a scene, stringing together
multiple shots into a coherent a scene, building a sense of anticipation for
a scene that is yet to appear, set up the emotional state of the audience
for coming events and so on.

The sound recordist needs to find a way to achieve the best sound
possible in the context of camera movements, lighting setup and other
visual constraints. As part of production planning, the sound prepa-
ration stage involves planning how much dialogue to use, how many
characters, nature of locations, extra sounds that must be recorded at
the location, other ambient sounds and live effects such as rustling of
clothes, noise of steps, etc. An important goal of recording dialogue is
that it should be consistent with the point of view of the camera and
from the perspective of the lens used for the shot. In order to make
the sounds consistent with the camera, dialogue and sound effects may
be on different tracks giving control over loudness, and used appropri-
ately to match the visual perspective. For example when closing up on
a talking couple within a crowd, the crowd sound may be dominating
the conversation at first. As soon as the camera focuses on the couple,
their conversation becomes the foreground sound and the crowd sound
recedes and becomes the background sound.

Eventually, the sound editor composes the production and post-pro-
duction sound tracks together to create the final mix. The main audio
editing approach that he uses to construct scenes is called sound over-
lap and describes a certain sound (be that speech, music, sound effect,
silence, or ambience) continuing over a shot boundary. This indicates to
a viewer that the two shots are connected into a scene. It is most promi-
nently used in shot/reverse shot dialogue scenes where the dialogue and
the ambient sound continues over the shot boundaries. Another exam-
ple, not drawn from feature films but rather from documentaries or news
storeis, is the continuation of a narrator’s voice over several shots.

Current editing practice also uses so-called sound bridges. A sound
bridge is a sound that either belongs to a previous scene but is kept
longer, or begins at the end of the previous scene but belongs to the
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next. This effect is used to bridge the viewer into the next scene either
by letting him ponder longer about the consequences of the previous
scene, or by anticipating the next action.

The use of the mentioned sound classes silence, music, sound effects,
voiceover, and speech for the construction of scenes is now illustrated on
an example: the movie ’Titanic’. Through discussion of this example,
we can also explain in more detail the general use of the different sound
classes for creation of narrative coherence.

Silence. In ’Titanic’, silence is not used to link shots together into a
scene. It is rather used to create a sense of tension in the viewer before an
important decision or discovery, or to make a transistion between scenes
of the past and the present. An example is the transition between the
scene that shows the main actor (Jack) kissing the main actress (Rose)
which is followed by a period of total silence. The next scene shows
Rose as an old woman reminiscing about the episode. And later, there
is again silence when there is a flash back and the scene goes back to the
ship. Here silence is used as a punctuation to create a temporal ellipsis.

Music. Music is a dominant sound that is used throughout the
’Titanic’ movie to connect multiple shots. Music is often used to bind
the picture together, particularly over cuts and transitions. It connects
shots that may not have apparent connections. An example are the film
titles. They consist of shots from the start of the journey of the Titanic
in 1912 and the present in which divers are discovering the sunk ship.
The music thus transports the audience to another place and time.

Another prominent example is the scene in which Jack draws a sketch
of Rose. This scene consists of a number of distinct shots taken from dif-
ferent angles as he sketches her. What binds these shots into a coherent
scene is the continuity of the music throughout the drawing period.

When music is used to connect shots, it may also drive the shot se-
quence, instilling it with energy. When Rose and Jack flee from Rose’s
room after the drawing scene, the music changes to an Irish tune, which
becomes the dominant music during the following chase. The subsequent
shots show the workers in the engine room, where they arrive while try-
ing to get away from their pursuers. The piece of Irish music acts as
a sound bridge that transports the viewers from the deck to the engine
room.

It is mostly post-production music which is used to connect shots
together. However, production music can serve the same purpose. On
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the ’Titanic’, for example, the shots of the Sunday sermon on the ship
are unified by the choral singing of the attendants.

Sound effects. Sound effects are often used to direct, guide and
shift the attention of the viewer both in the temporal and spatial dimen-
sion, thus creating a sense of drama in a scene. For example, during the
conversation at the dinner scene, there is a sharp sound of cutlery, and
the viewer’s focus is immediately turned on Jack and his speech about
how he won a free ticket to get on board the ship.

The ways in which sound effects can be combined to create a continu-
ous stream of information is illustrated during the scenes that show the
evacuation of passengers from the ship to the lifeboats. Here, a variety
of sound effects - such as sounds of breaking glass, water waves at vari-
ous loudness levels, and screaming sounds of people - are introduced to
highlight the commotion and confusion of the passengers. This recurring
mix of sound effects unifies the sequence into a coherent set.

In the ’Titanic’ sound effects are however rarely used to connect dif-
ferent shots into coherent scenes. That also stems from the commonly
short-timed nature of sound effect. For example, the toot of the ship’s
siren is used several times to introduce a sharp break from an indoor
scene to an outdoor scene.

Voiceover. An special category of post-production sound is the
voiceover. A voiceover is a separate voice that is not in sync with the
picture. It may represent the main character commenting or narrating
the story. For example, the voice of Rose as the old woman serves as a
voice over to move between two periods of time and lends poignancy to
the romance on the Titanic.

Speech. Speech overlaps occur frequently in the ’Titanic’. As an
example take the scene at the ship’s stern where Jack stops Rose from
jumping off by talking to her. Their dialog covers several shots. Most
other dialogues in the movie function similarly. However, not that music
is often used to fill in gaps in speech breaks or as background sound to
a dialogue.

As the sounds that accompany the moving image have become in-
creasingly sophisticated, the final sound track - which is a judicial and
artistic combination of all categories of sounds shown in Figure 1.2 - has
a profound impact on the audience’s response to the world inhabited by
the characters.
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3. Automatic extraction

After identifying the kind of scenes that are built for narrative co-
herence using production sounds and post-production sound editing, we
now proceed to a discussion of the feasibility of automatic determination
of these scene types. The aim here is to illustrate how to link high-level
cinematic scene structures and low-level signal analysis.

We first enumerate the assumptions on which our discussion is based:

1 Material: only the final edited and mixed film is available - there
is no access to the different video and sound tracks out of which
the film was composed.

2 Format: digitised sound and video tracks are available, possibly in
a compressed format such as MPEG-2.

3 Shot segmentation: a (highly reliable) set of shot boundaries is
available, which might have been determined via video analysis or
manual extraction.

Based on these preconditions, we will now examine how we can auto-
matically determine scenes by analysing the sound track.

3.1 Scenes created by narration

Wang et al state that “the clustering of ’shots’ into ’scenes’ depends on
subjective judgement of semantic correlation.” ([10], p.20). This seman-
tic correlation is built by the narration. For example, in a documentary
a topic may correlate shots semantically, while in a news broadcast this
is done by the news stories. In feature films it may be a certain action
or event that produces the semantic correlation.

On the sound track, the narration of a video is presented mainly
via the spoken words. Therefore, the textual transcription of a video
may be used for an analysis of the semantic relationship between shots
and a grouping of shots into scenes. In this case, automatic speech
recognition (ASR) and a linguistic analysis of the resulting transcription
are required to link shots through the context of the narration. ASR may
be used successfully on clean studio speech recordings as are common
for documentaries or studio news broadcasts. Unfortunately, current
ASR results are not very reliable on general film sound tracks because
of the large amount of other sounds present at the same time. Therefore
this approach is bound to be not very successful on most types of film
material nowadays.
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3.2 Scenes created by editing

Instead of performing a linguistic analysis, Wang et al [10] propose
another approach: “(..) sometimes it is possible to recognize shots that
are related in locations or events, without actually invoking high-level
analysis of semantic meanings.” ([10], p. 20). Our analyses of film
production practices confirm this statement: sound editing is often used
to convey the narrative structure to the viewer. It is therefore possi-
ble to attempt identification of scenes which are created through sound
overlaps.

There are two fundamentally different approaches to the automatic
determination of such scenes: the first is a top-down approach which
starts from the art of film making, and uses signal analysis on the sound
track for identification of sound overlaps in a way similar to a human
analyser. The second approach is a data-driven bottom-up approach
and starts from the kinds of audio features that are available. It investi-
gates change patterns of the features that help in determining relations
between consecutive shots and clustering them into scenes.

3.2.1 Top-down approach. We describe five basic sound
classes which are distinguished during film production:

speech,

music,

sound effects,

sound ambience, and

silence.

A human analyser who tries to identify sound overlaps will start by
identifying these sound classes in the film and determining the temporal
segments during which they occur. Some algorithms have been devel-
oped to perform that task automatically. Implementations of sound
segmentation approaches usually extract features on short time frames
(10-50 ms) and classify them into one of their considered sound classes.
This often results in a highly segmented sound track; so some publi-
cations propose that a more accurate segmentation can be derived by
integrating sequential frames into longer segments according to some
heuristics (such as an n-gram approach where rows of n segments of the
same class are detected). This approach determines non-overlapping
segments with one specified sound class only. So, at intervals during
which some of these classes occur simultaneously, it can only determine
the dominating class.
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Unfortunately, no current publication on sound segmentation and
classification distinguishes between the same sound classes as the ones
listed above. Zhang and Kuo [11] get the closest by distinguishing be-
tween silence, speech, music, environmental sound with special features,
and other environmental sound. Most regard music and speech only, see
for example [12, 13, 14, 15, 16, 17, 18, 19]. Some also include silence and
other sounds, as in [20, 21, 22, 23, 24, 25].

Let us presume that automatic identification of the above listed sound
classes is feasible. The most straight-forward approach toward identifi-
cation of sound overlaps is then based on the segmentation of the sound
track into intervals classified as one of these sound classes by identifica-
tion of the dominant sound. Integration of sequential shots into scenes
is performed where a determined segment of one class overlaps a shot
boundary. Figure 1.3 illustrates this approach.

Figure 1.3. Simple top-down sound overlap identification.

There are a number of drawbacks with this approach:

1 it cannot handle changes of sound within one sound class,

2 it cannot handle sound overlaps which are interrupted at the shot
boundary by another dominating sound class, and

3 it cannot handle sound bridges.

Let us look at each one of the drawbacks.
A few examples demonstrate the first one: assume that one shot ends

with music and the next one starts with music, though a completely
different type. The simple approach would merge them into one scene
although they really belong to different ones. Another example is a
dialogue between two people that ends in one shot followed by a dialogue
between two different people that starts in the next one. Grouping shots
connected by the same sound class will often associate shots that should
be kept separate. Therefore, there is a requirement to not only segment
into the given sound classes but to subsegment within a sound class.
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Music, for example, needs to be segmented in case of strong changes,
speech in case of speaker changes (such as in [26]), and ambience as soon
as the background sound environment changes substantially. Figure 1.4
illustrates this approach.

Figure 1.4. More detailed top-down sound overlap identification.

The second problem often occurs with dialogues. Pauses in dailogs are
very common. Such pauses contain the sound ambience, but in films are
often filled by music. As a result, dialogues usually come in bursts with
either silence, ambience, or music segments in between. While dialogue
overlaps are common in continuity editing, their automatic identifica-
tion therefore may not be simple. A similar problem occurs where the
sound ambience might be dominated by a short sound effect at the shot
boundary. One approach to overcome some of these problems is to look
at each sound class separately and identify its occurrance. Instead of
creating only a single segmentation of a sound track, this will create
five segmentations which overlap at times. Figure 1.5 illustrates this
approach. In this way, some of the original sound tracks’ composition
can be restored and exploited more indepth.

Figure 1.5. Multitrack top-down sound overlap identification.
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Sound bridges of course are a counterexample to the use of sound for
continuity editing. They create a problem as they connect shots which
really belong to different scenes. This can often be irritating to human
viewers, who overcome the situation through analysis of the narration.
Our heuristic approach, however, will be quite helpless in this situation.
One may be tempted to think that sound bridges start (or end) closer
to a scene boundary than sound overlaps. Consequently, one would
only need to define a temporal interval around a shot boundary during
which overlapping sound is taken as a sound bridge and ignored. There
is however no general rule to which sound editors adhere for timing
differences between sound overlaps and sound bridges. Therefore, the
best way to distinguish between a sound bridge and a sound overlap
is probably during a post-processing step where identified scenes are
re-examined for their sound ambience consistency.

3.2.2 Bottom-up approach. Even without determination
of the five basic sound classes, patterns in features extracted from the
sound data may indicate the shots that belong together into a scene.

One approach is to generically segment the audio stream into inter-
vals containing consistent feature patterns. It is expected that a sound
overlap is covered by an audio segment such that the shots of a scene
get fused by audio segments overlapping the shot boundaries. A scene
is then characterised by both a video and an audio segment boundary.

In analogy to the video segmentation approach, research has ap-
proached the problem of generic audio segmentation as a problem of
finding significant changes in feature vectors. There is a large set of
possible audio features that may be used in a feature vector:

transform-based features such as spectral [27], cepstral [28,
29, 30, 31], linear predictive coefficients [32], or linear spectral
frequencies [33],

physical features such as energy statistics, zero crossing statis-
tics, spectral centroid, spcetral bandwidth, or spectral peak, (see
[34, 35, 36, 37]),

and perceptual features such as pitch, tonality, harmonicity,
pulse metric, or silence density (see [11, 28, 32, 38, 13]).

This is an open list as new audio features emerge every day.
As in the top-down approach, features are calculated on short analysis

windows (10-100ms). They are integrated into a compact feature vector
on larger temporal windows (1-3s) using statistical methods. Distances
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between these feature vectors are calculated and significant changes are
characterised by large distances, which result in segment boundaries.

This approach works amazingly well for music, silence, or ambience
overlaps. The reason is that the spectral composition of these sound
classes is relatively stable. In contrast, human speech is composed of
speech bursts and pauses. Therefore, speech overlaps are more difficult
to grasp with this generic approach.

One way to overcome this problem is by calculating the distance be-
tween all audio segments of two neighbouring shots and only cluster them
into one scene in case of a very strong similarity of at least one general
audio segment in each shot. This approach also provides a handle to
sound bridges because the fact that a sound overlaps a shot boundary is
less important than the fact that the neighbouring shots contain highly
similar sound.

A completely different approach is to use a sequence of feature vectors
to calculate a model for specific scene tyes. A model (as in a hidden
Markov model, HMM) consists of a probabilistically trained sequence
of feature vectors which represent a typical pattern for a specific scene
type. Thus, heuristics on patterns or training of feature vector sequences
on scene types may be used to determine which shots to group together.

4. Implemented approaches

This section gives an overview of publications on existing research
approaches using audio analysis for scene detection. It follows the three
subsections established in the previous section. We start by examining
systems that implement scene determination by linguistic analysis, thus
detecting narration breaks.

4.1 Scenes determined by linguistic analysis

The Informedia Digital video library project makes use of externally
available transcripts or ASR transcribed soundtracks for scene segmen-
tation. Hauptmann et al. [39] first identify shots (which they call scenes)
via video cut detection. In a second step they identify scene boundaries
(which they call video paragraphs) via natural language processing and
silence analysis. With ASR, they have to cope with a word error rate
in the range from 20% to 70% depending on the quality of the speech
recording. Results seem quite promising.

Because of the large word error rates associated with current ASR
systems, closed captions have been used as another source for getting
high-accuracy textual transcripts. One such system has been presented
by Huang et al. [40]. They automatically segment TV news into news
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stories, story introduction, augmented news stories, and news summary
using audio analysis only. General audio features such as the non-silence
ratio and the standard deviation of the zero crossing rate (ZCR) are
first used to separate out commercial breaks from the recorded news-
cast. Then, they identify anchor person shots using text-independent,
closed-set speaker identification with a trained Gaussian mixture model.
Finally, the news stories are extracted via a discourse-based segmenta-
tion on the closed captions. The accuracy that they achieve is high: on
a 2 hour test database, they determine all scene boundaries correctly
while finding no incorrect boundaries.

Another system that uses only audio information for topic segmen-
tation of news broadcasts has been presented by the SRI MAESTRO
team [41]. To find the topic boundaries, they extract prosodic informa-
tion from the speech waveform (pause and pitch patterns) and calculate
word usage statistics from the ASR transcript. Both sources of infor-
mation are combined in a HMM to calculate the topic segmentation.
In a query they would thus prompt the user for keywords and return
associated scenes.

Most systems performing scene segmentation by linguistic analysis
have worked on news broadcasts. The last such system that we would
like to mention here is called Rough’n’Ready [42]. It segments radio news
by speaker gender and speaker, creates a transcript with ASR, augments
this transcript with punctuation and capitalisation, and segments it into
paragraphs and stories via language analysis. The extracted information
is used as an index into a collection of news broadcasts, and for search
and retrieval on this collection. Extracted story boundaries seem to be
highly reliable.

Before continuing on from the use of linguistic analysis to sound clas-
sification for scene segmentation, we would like to mention that many
publications perform speaker segmentation on TV or radio broadcasts
also with the aim of accessing news topics more easily. However, as they
do not explicitly detect scene or story breaks but rather imply such a
break at a speaker change, they are not regarded here.

4.2 Scenes determined by sound classification

Segmentation of TV news broadcasts has also been a main target of
scene segmentation publications using sound classification. All use shot
boundaries calculated from video track analysis.

Jiang et al. [24] first classify sound segments on a 1 s resolution into
speech, music, environmental sounds, and silence. Speech segments are
further distinguished into different speakers. This results in a set of audio
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breaks determined as sound segment boundaries. Shot boundaries that
coincide with an audio break are taken as scene change candidates. They
are confirmed if they coincide with color correlation breaks calculated
on the video track. With this approach they reach a recall rate of 91.9%
and a precision of 86.8% on a set of 800 shots and 100 scenes.

Nam et al. [43] also work on TV news broadcasts. They determine
silence and speaker segments and accept such shot boundaries as scene
breaks where a speaker change coincides with a shot boundary. Results
are promising.

Other publications that use sound classification for scene segmenta-
tion focus on analysing more general film material such as movies or
documentaries. All of these also use shot boundaries computed on the
video track.

Saraceno and Leonardi [44] distinguish between dialogues, stories, ac-
tion scenes, and generic scenes. They regard the following sound classes:
silence, speech, music, and noise. Video shots are grouped such that au-
dio and visual characteristics follow predefined visual patterns for the
four scene types:

dialogue scenes are determined where the audio contains mostly
speech and the shot pattern is alternating ABABABA...

story scenes contain mostly speech and have a shot pattern that
repeats some content ABCADEFGAH...

action scenes contain mostly non-speech and a non-repeating shot
pattern ABCDEF...

generic scenes are all the rest.

Shot patterns are identified via a similarity measure between shots which
are represented as a vector quantisation (VQ) codebook with distortion.

Automatic segmentation of dialogue scenes is at the core of the publi-
cation of Alatan et al. [21]. They detect dialogue scenes in movies using
a multi-modal HMM-based approach. To that end, sounds are classified
into speech, music, and silence. Face detection is performed on the video
track. Shots at the same location are clustered based on colour similar-
ity. Then they set up a HMM containing different stages of a dialogue
scene (establishing scene, dialogue scene, transitional scene) and train
it with feature vectors containing tokens from the audio classification
(music / silence / speech), face detection (face / no-face), and location
change (changed / unchanged). They achieve an accuracy of about 95%.
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4.3 Scenes determined by feature patterns

Accuracy in automatic sound classification is still very low. Some
publications have therefore relied less on semantic analysis. The struc-
ture of low-level feature sequences was used for determination of scenes
instead.

Pfeiffer, Lienhart, and Effelsberg [45] compute audio clips by deter-
mining significant changes in the sound track. To that end, background
segments of 0.5 s minimum duration are calculated first. Audio cuts
are then identified as significant changes. Transitions between fore- and
background and audio cuts determine the boundaries for audio clips.
Each such clip is represented via an audio feature vector calculated on
100 ms windows. Differences of feature vectors between all the audio
clips of subsequent shots are calculated. Shots are clustered together
if differences between them are small. The hit rate on two full feature
films was around 63%.

Nam and Tewfik [46] propose audio segmentation by detection of sharp
changes between spectra of 80 ms windows. If a segment boundary
coincides with a shot break, a scene boundary is established. They only
examine this approach for the detection of TV commercials and are
successful in detecting three commercial boundaries.

Huang et al. [47] detect audio breaks by computing significant changes
in sound using a dissimilarity index with 12 features (such as non-silence
ratio, volume dynamic range) on 1 s clips. Frames with both, shot breaks
and audio breaks, are declared scene boundaries. They examine news,
commercials, and sports film material and achieve a 100% hit rate with
30% false detections.

Finally, we examine two feature vector based scene segmentation ap-
proaches that only use audio information for segmentation. They both
achieve promising results, but a combination with shot boundaries from
video analysis should bring much higher accuracy.

Liu et al. [48] use feature vectors on 1 s clips. Distances between the
current clip and several previous and following clips are calculated. A
clip is declared a scene change point if it is similar to the six following
clips and different from the six preceding ones. The accuracy of their
approach is high (most scene boundaries are found), but with about
100% false alarms.

Kemp et al. [49] examine three different types of generic audio seg-
mentation: model-based, metric-based, and hybrid segmentation for
story segmentation in TV news broadcasts. The model-based segmen-
tation creates a set of models for different acoustic classes, trains them,
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and classifies the audio stream using the model (HMM or GMM) nomi-
nating class boundaries as story boundaries. The metric-based segmen-
tation uses maxima in distances between feature vectors of small frames
as segment boundaries. Their best result is achieved with a hybrid seg-
mentation, performing metric-based clustering on larger frames (chunks
of size 1 s) and use of the clusters to train models and perform seg-
mentation. This integration increases the F-measure from about 60% to
78%.

5. Conclusions

This chapter described the process of constructing scenes using audi-
tive effects introduced during film production. It continued into a dis-
cussion on approaches for automatic determination of identified scene
types. Finally, an overview of existing implementations was presented.
Our survey shows that none of the existing implementations are capable
of identifying all scene types discussed, but that some very fundamental
techniques have been developed to support that task.
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